梯度消失问题:使用非饱和激活函数,如ReLU、LeakyReLU等使用Batch Normalization来规范化网络的输入使用较小的学习率使用梯度裁剪,限制梯度的大小梯度爆炸问题:使用梯度裁剪,限制梯度的大小使用权重正则化,如L1正则化、L2正则化使用较小的学习率初始化权重时可以使用Xavier初始化或He初始化
通过以上方法可以有效地减轻梯度消失和爆炸问题,提高训练的稳定性和效果。
梯度消失问题:使用非饱和激活函数,如ReLU、LeakyReLU等使用Batch Normalization来规范化网络的输入使用较小的学习率使用梯度裁剪,限制梯度的大小梯度爆炸问题:使用梯度裁剪,限制梯度的大小使用权重正则化,如L1正则化、L2正则化使用较小的学习率初始化权重时可以使用Xavier初始化或He初始化
通过以上方法可以有效地减轻梯度消失和爆炸问题,提高训练的稳定性和效果。