在PyTorch中进行模型评估通常需要以下步骤:
导入所需的库和模型:import torchimport torch.nn as nnimport torch.optim as optimimport torchvisionfrom torchvision import transforms, datasets加载测试数据集:transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)加载模型:model = YourModel()model.load_state_dict(torch.load('model.pth'))model.eval()定义评估函数:def evaluate_model(model, test_loader): correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = correct / total print('Accuracy of the model on the test set: {:.2f}%'.format(accuracy * 100))调用评估函数:evaluate_model(model, test_loader)这样你就可以在PyTorch中对模型进行评估了。




