PaddlePaddle中的图像分类任务如何实现

   2024-10-26 3600
核心提示:在PaddlePaddle中实现图像分类任务通常使用卷积神经网络(CNN)。以下是一个简单的图像分类示例:导入必要的库和模块:import pa

在PaddlePaddle中实现图像分类任务通常使用卷积神经网络(CNN)。以下是一个简单的图像分类示例:

导入必要的库和模块:
import paddleimport paddle.nn.functional as Ffrom paddle.vision import transforms
定义一个简单的卷积神经网络模型:
class Net(paddle.nn.Layer):    def __init__(self, num_classes=10):        super(Net, self).__init__()        self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)        self.pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)        self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)        self.pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)        self.fc1 = paddle.nn.Linear(in_features=64*8*8, out_features=128)        self.fc2 = paddle.nn.Linear(in_features=128, out_features=num_classes)    def forward(self, x):        x = self.pool1(F.relu(self.conv1(x)))        x = self.pool2(F.relu(self.conv2(x)))        x = paddle.flatten(x, start_axis=1)        x = F.relu(self.fc1(x))        x = self.fc2(x)        return x
准备数据和数据增强:
transform = transforms.Compose([    transforms.Resize(size=32),    transforms.RandomHorizontalFlip(),    transforms.ToTensor()])train_dataset = paddle.vision.datasets.CIFAR10(mode='train', transform=transform)train_loader = paddle.io.DataLoader(train_dataset, batch_size=32, shuffle=True)test_dataset = paddle.vision.datasets.CIFAR10(mode='test', transform=transform)test_loader = paddle.io.DataLoader(test_dataset, batch_size=32, shuffle=False)
训练模型:
model = Net()optimizer = paddle.optimizer.Adam(parameters=model.parameters())criterion = paddle.nn.CrossEntropyLoss()model.train()for epoch in range(10):    for data in train_loader:        images, labels = data        outputs = model(images)        loss = criterion(outputs, labels)                optimizer.clear_grad()        loss.backward()        optimizer.step()
在测试集上评估模型:
model.eval()accs = []for data in test_loader:    images, labels = data    outputs = model(images)    acc = paddle.metric.accuracy(outputs, labels)    accs.append(acc.numpy())    print("Test Accuracy: ", sum(accs) / len(accs))

这是一个简单的图像分类示例,实际应用中可以根据需求调整网络结构、数据增强方式、优化器等参数进行优化。

 
举报打赏
 
更多>同类网点查询
推荐图文
推荐网点查询
点击排行

网站首页  |  关于我们  |  联系方式网站留言    |  赣ICP备2021007278号