tensorflow中vgg搭建的步骤是什么

   2024-10-25 9940
核心提示:在TensorFlow中搭建VGG模型的步骤如下:导入必要的库和模块:import tensorflow as tffrom tensorflow.keras.layers import Inpu

在TensorFlow中搭建VGG模型的步骤如下:

导入必要的库和模块:
import tensorflow as tffrom tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense
定义VGG网络的结构:
def build_vgg(input_shape):    model = tf.keras.Sequential()        # Block 1    model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=input_shape))    model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))    model.add(MaxPooling2D((2, 2), strides=(2, 2)))        # Block 2    model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))    model.add(MaxPooling2D((2, 2), strides=(2, 2)))        # Block 3    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))    model.add(MaxPooling2D((2, 2), strides=(2, 2)))        # Block 4    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))    model.add(MaxPooling2D((2, 2), strides=(2, 2))        # Block 5    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))    model.add(MaxPooling2D((2, 2), strides=(2, 2))        model.add(Flatten())        # Fully connected layers    model.add(Dense(4096, activation='relu'))    model.add(Dense(4096, activation='relu'))    model.add(Dense(1000, activation='softmax'))        return model
编译模型并进行训练:
input_shape = (224, 224, 3)vgg_model = build_vgg(input_shape)vgg_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])vgg_model.fit(train_images, train_labels, epochs=10, batch_size=32, validation_data=(validation_images, validation_labels))

这样就可以在TensorFlow中搭建VGG模型并进行训练了。

 
举报打赏
 
更多>同类网点查询
推荐图文
推荐网点查询
点击排行

网站首页  |  关于我们  |  联系方式网站留言    |  赣ICP备2021007278号