在PyTorch中搭建卷积神经网络通常涉及以下步骤:
导入必要的库和模块:import torchimport torch.nn as nnimport torch.nn.functional as F定义卷积神经网络模型类:class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(32*7*7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = x.view(-1, 32*7*7) x = F.relu(self.fc1(x)) x = self.fc2(x) return x实例化模型类并定义损失函数和优化器:model = CNN()criterion = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(model.parameters(), lr=0.001)训练模型:for epoch in range(num_epochs): for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step()测试模型:correct = 0total = 0with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item()accuracy = correct / totalprint('Accuracy: {:.2f}%'.format(100 * accuracy))以上是一个简单的卷积神经网络的搭建过程,你可以根据具体的任务和数据集自行调整网络结构和超参数。




