pytorch如何搭建卷积神经网络

   2024-10-25 9320
核心提示:在PyTorch中搭建卷积神经网络通常涉及以下步骤:导入必要的库和模块:import torchimport torch.nn as nnimport torch.nn.functi

在PyTorch中搭建卷积神经网络通常涉及以下步骤:

导入必要的库和模块:
import torchimport torch.nn as nnimport torch.nn.functional as F
定义卷积神经网络模型类:
class CNN(nn.Module):    def __init__(self):        super(CNN, self).__init__()        self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)        self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)        self.fc1 = nn.Linear(32*7*7, 128)        self.fc2 = nn.Linear(128, 10)    def forward(self, x):        x = F.relu(self.conv1(x))        x = F.max_pool2d(x, kernel_size=2, stride=2)        x = F.relu(self.conv2(x))        x = F.max_pool2d(x, kernel_size=2, stride=2)        x = x.view(-1, 32*7*7)        x = F.relu(self.fc1(x))        x = self.fc2(x)        return x
实例化模型类并定义损失函数和优化器:
model = CNN()criterion = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
训练模型:
for epoch in range(num_epochs):    for images, labels in train_loader:        optimizer.zero_grad()        outputs = model(images)        loss = criterion(outputs, labels)        loss.backward()        optimizer.step()
测试模型:
correct = 0total = 0with torch.no_grad():    for images, labels in test_loader:        outputs = model(images)        _, predicted = torch.max(outputs.data, 1)        total += labels.size(0)        correct += (predicted == labels).sum().item()accuracy = correct / totalprint('Accuracy: {:.2f}%'.format(100 * accuracy))

以上是一个简单的卷积神经网络的搭建过程,你可以根据具体的任务和数据集自行调整网络结构和超参数。

 
举报打赏
 
更多>同类网点查询
推荐图文
推荐网点查询
点击排行

网站首页  |  关于我们  |  联系方式网站留言    |  赣ICP备2021007278号