在Keras中如何处理多类别分类问题

   2024-10-20 7520
核心提示:在Keras中处理多类别分类问题通常使用多类别交叉熵损失函数和softmax激活函数。以下是一个简单的示例代码:from keras.models im

在Keras中处理多类别分类问题通常使用多类别交叉熵损失函数和softmax激活函数。以下是一个简单的示例代码:

from keras.models import Sequentialfrom keras.layers import Dense# 创建模型model = Sequential()model.add(Dense(units=64, activation='relu', input_dim=100))model.add(Dense(units=10, activation='softmax'))# 编译模型model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型model.fit(X_train, y_train, epochs=10, batch_size=32)# 评估模型loss, accuracy = model.evaluate(X_test, y_test)print('Test loss:', loss)print('Test accuracy:', accuracy)

在这个例子中,模型有一个输入层和一个输出层,输出层有10个单元,对应于10个类别。损失函数使用多类别交叉熵,优化器使用adam,评估指标是准确率。在训练模型时,X_train是输入数据,y_train是标签数据,epochs是训练次数,batch_size是每次训练的样本数。最后,评估模型的性能并打印测试损失和准确率。

 
举报打赏
 
更多>同类网点查询
推荐图文
推荐网点查询
点击排行

网站首页  |  关于我们  |  联系方式网站留言    |  赣ICP备2021007278号