通过C++实践深入探讨红黑树的性质

   2024-10-20 4790
核心提示:红黑树是一种自平衡二叉搜索树,它在插入和删除元素时能够保持树的平衡,从而保证了树的查找、插入和删除操作的时间复杂度都是O(

红黑树是一种自平衡二叉搜索树,它在插入和删除元素时能够保持树的平衡,从而保证了树的查找、插入和删除操作的时间复杂度都是O(logn)。红黑树有以下几个性质:

每个节点要么是黑色,要么是红色。根节点是黑色。每个叶子节点(NIL节点)是黑色。如果一个节点是红色,则它的子节点都是黑色。对于每个节点,从该节点到其所有后代叶子节点的简单路径上,均包含相同数量的黑色节点。

下面是一个简单的C++实现红黑树的例子:

#include <iostream>#include <vector>enum Color { RED, BLACK };template <typename T>struct Node {    T data;    Color color;    Node* left;    Node* right;    Node* parent;    Node(T data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}};template <typename T>class RedBlackTree {public:    RedBlackTree() : root(nullptr) {}    void insert(T data) {        Node<T>* node = new Node<T>(data);        insertNode(node);        fixInsert(node);    }    void printInorder() {        printInorderHelper(root);        std::cout << std::endl;    }private:    Node<T>* root;    void insertNode(Node<T>* node) {        Node<T>* temp = nullptr;        Node<T>* current = root;        while (current != nullptr) {            temp = current;            if (node->data < current->data) {                current = current->left;            } else {                current = current->right;            }        }        node->parent = temp;        if (temp == nullptr) {            root = node;        } else if (node->data < temp->data) {            temp->left = node;        } else {            temp->right = node;        }    }    void fixInsert(Node<T>* node) {        while (node != root && node->parent->color == RED) {            if (node->parent == node->parent->parent->left) {                Node<T>* uncle = node->parent->parent->right;                if (uncle->color == RED) {                    node->parent->color = BLACK;                    uncle->color = BLACK;                    node->parent->parent->color = RED;                    node = node->parent->parent;                } else {                    if (node == node->parent->right) {                        node = node->parent;                        leftRotate(node);                    }                    node->parent->color = BLACK;                    node->parent->parent->color = RED;                    rightRotate(node->parent->parent);                }            } else {                Node<T>* uncle = node->parent->parent->left;                if (uncle->color == RED) {                    node->parent->color = BLACK;                    uncle->color = BLACK;                    node->parent->parent->color = RED;                    node = node->parent->parent;                } else {                    if (node == node->parent->left) {                        node = node->parent;                        rightRotate(node);                    }                    node->parent->color = BLACK;                    node->parent->parent->color = RED;                    leftRotate(node->parent->parent);                }            }        }        root->color = BLACK;    }    void leftRotate(Node<T>* node) {        Node<T>* temp = node->right;        node->right = temp->left;        if (temp->left != nullptr) {            temp->left->parent = node;        }        temp->parent = node->parent;        if (node->parent == nullptr) {            root = temp;        } else if (node == node->parent->left) {            node->parent->left = temp;        } else {            node->parent->right = temp;        }        temp->left = node;        node->parent = temp;    }    void rightRotate(Node<T>* node) {        Node<T>* temp = node->left;        node->left = temp->right;        if (temp->right != nullptr) {            temp->right->parent = node;        }        temp->parent = node->parent;        if (node->parent == nullptr) {            root = temp;        } else if (node == node->parent->right) {            node->parent->right

 
举报打赏
 
更多>同类网点查询
推荐图文
推荐网点查询
点击排行

网站首页  |  关于我们  |  联系方式网站留言    |  赣ICP备2021007278号